

SuperCollider Tutorial

 Chapter 2

By Celeste Hutchins

2005

www.celesteh.com

 Creative Commons License: Attribution Only

Functions

Nicole feels like she's got the hang of SuperCollider and she heard Bush say

that the economy is picking up, so she's dropped out of grad school to work for

the new SuperCollider start-up company SuperSounds.com. On her first day,

her boss tells her to write a function that prints "hello world" four times. "No

problem," she thinks and goes to look at her class notes. Functions are code

blocks encased by curly brackets, { } and hello world is easy enough. So she

writes:

(

 {

 var greet;

 greet = "hello world";

 greet.postln;

 greet.postln;

 greet.postln;

 greet.postln;

 }

)

Then she thinks, "I should have asked for a signing bonus." She tries running it,

by double clicking to the right of the top parenthesis and hitting enter. In the

Untitled output window it says, "a Function"

What's the problem? She declared a variable called greet. greet gets "hello
world". Then she sends a postln message to greet four times. Every line ends

with a semicolon . . .

Then she realizes that she defined a function, but never told the interpreter to

run it. The interpreter saw a code block surrounded by curly brackets and

thought "a function!" Then it thought, "What do you want me to do with this?

Nothing? Ok, I'll throw it away." So Nicole modifies her code:

(

 var func;

 func = {

 var greet;

 greet = "hello world";

 greet.postln;

 greet.postln;

 greet.postln;

 greet.postln;

 };

 func.value;

)

And then it works great. value is a message you can send to functions. It

means, "Run yourself."

But then Nicole gets a message from her boss saying, "Sometimes, we need to

print out hello world five times and once in a while, three times, and rarely, it

needs to print out infinite times." Nicole considers writing a few different

versions of the function and calling them func4, func3, etc, but then remembers

about arguments to functions.

(

 var func;

 func = { arg repeats;

 var greet;

 greet = "hello world";

 repeats.do ({

 greet.postln;

 });

 };

 func.value(4);

)

When she writes her function, she declares to the interpreter that the function

takes one argument. An argument is a special type of variable that gets set

when the function is called. When she calls the function with func.value(4);,

she's assigning a value to the argument repeats.

Then, inside the function, she's written, repeats.do. What is 'do'? It's a

message. It takes a function as an argument. 'do' is a message you can send

to integers that runs the function passed as an argument the number of times

as the integer that it was called on. In this example, repeats is 4, so it runs four

times.

What is an integer? An integer is a whole number. -2, -1, 0, 1, 2, 3, 4, etc.

There is a special integer in SuperCollider called inf. It means infinity. If we try

calling our above function, with

func.value(inf);

hello world will print out forever, or until we stop the program by hitting apple-. .

Then Nicole's boss sends another email saying that marketing has some

changes. Every line needs to start out with the line number, starting with zero.

So she makes another change:

(

 var func;

 func = { arg repeats;

 var greet;

 greet = "hello world";

 repeats.do ({ arg index;

 index.post;

 " ".post;

 greet.postln;

 });

 };

 func.value(4);

)

The function called by do takes an argument. And that argument is the number

of times the loop has been run, starting with 0. So her output from this program

is:

0 hello world

1 hello world

2 hello world

3 hello world

post just means print without a new line at the end.

Almost every time, she runs this function, the argument is going to be 4. So she

can declare a default argument for the function.

(

 var func;

 func = { arg repeats = 4;

 var greet;

 greet = "hello world";

 repeats.do ({ arg index;

 index.post;

 " ".post;

 greet.postln;

 });

 };

 func.value;

)

When she calls func.value, if there's no argument, then the interpreter will

assign 4 to repeats by default. If she calls it with, func.value(6); then repeats

gets 6 instead. What if she accidentally passes in something besides an Integer

into her function? That depends. If the object she passes in also understands a

do message, then it will use that instead, although the result may differ.

Otherwise, she will get an error.

What if the function took a lot of arguments with default values?

(

 var func;

 func = { arg foo = 0, bar = 0, baz = 1, repeats = 4;

 var greet;

 greet = "hello world";

 repeats.do ({ arg index;

 index.post;

 " ".post;

 greet.postln;

 });

 };

 func.value;

)

If she wants to pass in arguments, she does it in the order they're declared in.

func.value(0 /* foo */, 0 /* bar */, 1 /* baz */, 3 /* repeats */);

However, if we're happy with all the default values, there's a way to tell the

function just to assign to a particular variable, out of order:

func.value(repeats: 3);

You can also just pass in the first N arguments and leave the remainder to the

default values:

func.value(3, 1);

And you can combine approaches:

func.value(2, repeats: 6);

Those slash-stars up there are comments. The interpreter ignores everything

between a forward slash star and a backslash star. They can span multiple

lines. You can also create single line comment by using forward slash forward

slash:

// This is a comment

Some times it's useful to comment out a line of code while debugging. So you

can skip a particular line in order to figure out where your error is.

The philosophical point of a function is to return a value. Doing things within

functions, like printing are technically called side effects. What the function

returns is the value of its last line. Let's change that function so it returns the

number of times that it printed.

(

 var func;

 func = { arg repeats = 4;

 var greet;

 greet = "hello world";

 repeats.do ({ arg index;

 index.post;

 " ".post;

 greet.postln;

 });

 repeats;

 };

 func.value;

)

Now, if we create a new variable called times, we can assign the output of the

function to it.

(

 var func, times;

 func = { arg repeats = 4;

 var greet;

 greet = "hello world";

 repeats.do ({ arg index;

 index.post;

 " ".post;

 greet.postln;

 });

 repeats;

 };

 times = func.value;

 times.postln;

)

Prints out hello world with the line number like before, and then at the bottom,

prints out a 4. Or we could change those last two lines from

 times = func.value;

 times.postln;

 to

func.value.postln;

and the interpreter will read that statement left to right, first finding the value of

the function and then sending that value a postln message.

Ok, what happens if we take the above function and write some code below it

that looks like this:

(

 var func, times;

 func = { arg repeats = 4;

 var greet;

 greet = "hello world";

 repeats.do ({ arg index;

 index.post;

 " ".post;

 greet.postln;

 });

 repeats;

 };

 greet.postln;
)

We get errors.

• ERROR: Variable 'greet' not defined.

 in file 'selected text'

 line 14 char 6 :

 greet•.postln;

This is because of something called scope. Variables only exist in the code

block in which they are declared. Code blocks are zero or more lines of code

surrounded by parenthesis, or by curly braces. This means that variables and

arguments declared inside a function only exist inside that function. index does

not exist outside of its function, which is the function passed as an argument to

repeats.do. greet does not exist outside of it's function. None of these

variables exist outside of the parenthesis.

Variables in outer blocks are accessible within inner blocks. For example,

(

 var func, times;

 times = 0;

 func = { arg repeats = 4;

 var greet;

 greet = "hello world";

 times.postln;

 repeats.do ({ arg index;

 index.post;

 " ".post;

 greet.postln;

 });

 repeats;

 };

)

Is fine because times exists in the outer most block. In the same way, we can

use greet inside our repeats.do function.

There are, however, a few variables that can be used everywhere. The

interpreter gives us 26 global variables. Their scope is all of SuperCollider.

They are single letter variable names, a, b, c, d, e, f, etc. You don't need to

declare them and they keep their value until you change it again, even in

different code blocks. This is why the variable 's' refers to the Server. You can

change that, but you might not want to.

If you have any questions about functions, you can look at the functions help file

for more information. The most useful message you can send to a function is

value, but there are a few others, which you can read about. You may not

understand everything you see in the helpfiles, but it’s good to keep reading

them.

Numbers and Math

We just learned about Integers, which, remember are whole numbers, like -1, 0,

1, 2. And we learned about the do message.

What are some things you might want to do to a number? Add, subtract,

multiply, divide, modulus.

Remember algebra where a*b + c*d = (a * b) + (c * d). And remember how that

one cheap calculator just did what you punched in, in the order you punched it

in, without respecting order of operations? SuperCollider is like that cheap

calculator. Mathematical expressions are evaluated left to right. Addition and

subtraction have the same precedence as multiplication and division. That

means that if you want to do things in some order, you've got to use

parenthesis.

Parentheses are evaluated innermost to outermost.

(a + (b * (c + d)))

(2 + (4 * (3 + 2))) = (2 + (4 *(5))) = (2 + (20)) = 22;

One math operation that you might not have seen before is modulus. It means

"remainder" and it's represented by a '%'.

10 % 3 = 1

26 % 9 = 8

Ok, so the output of a modulus between two integers is an integer, by definition.

And if you add or subtract two integers, you get an integer. As you do if you

multiply two integers. But what is the result of division?

3 / 2 = 1.5

1.5 is not an integer. It's a type of number called a Floating point, or in

SuperCollider, a Float. A float is a fraction. 1.1, 2.5, -0.2, 5.0 are all Floats.

They also can add subtract, etc.

The number story so far:

• Whole numbers are Integers

• Real numbers are Floats

• Indicate order of operations with parenthesis

• Math operations are evaluated innermost to outermost and left to right

• Modulus (%) means remainder

You can do more with numbers than simple math and do loops. There are many

interesting and useful messages one can pass to Integer. It has a help file worth

reading. So type in the word Integer, starting with a capital-I and press apple-

shift-? to look at the help file. The top of that help file says:

superclass: SimpleNumber

superclass is a vocabulary word. It refers to a concept called inheritance.

What this superclass designation means is that Integer is a SimpleNumber.

When you define classes (recall that a call is the definition for an object), you can

define subclasses of any class. A subclass is a special type of the original

class. It inherits all the properties of its superclass. So the subclass is the

child and the superclass is the parent. We'll come back to this. But what it

means for us is that Integer is a SimpleNumber. Which means it understands all

the messages that you can pass to a SimpleNumber. So to find out about what

these inherited messages are, we should highlight "SimpleNumber" and hit

apple-shift-? Float and Integer both inherit from SimpleNumber, so take a look

at that help file. Looking at help files and trying stuff out will get you learning the

language faster than anything else. They might not make a lot of sense right

now, but if you keep looking, you'll get context and be able to figure them out in

the future.

What about order of operations at other times? If we have func.value(3+4), it

evaluates 3+ 4 to 7 before calling the function. We can put anything we want

inside those parentheses and it will evaluate what's inside until it gets to the

outermost parenthesis and then it will call the function.

We have one more example that hopefully ties all of this together. Remember

our SynthDef from Chapter 1?

(

 var syn, sound;

 syn = SynthDef.new("example2", {arg freq = 440, amp = 0.2;

 Out.ar(0, SinOsc.ar(freq, mul: amp));

 });

 syn.load(s);

)

We’ve added a field called amp, which indicates the amplitude or volume at

which the sound should play.

Now, lets’ write some code to play N overtones of 100Hz. We need to make

sure that our overall amplitude doesn’t exceed 1, or else we’ll get peaking. So,

we will divide 1 by the number of overtones into 1 to get the amp value to send

to each synth.

(

 var func;

 func = { arg repeats = 4;

 repeats.do({ arg index;

 Synth.new("example2", [\freq, (index + 1) * 100,

 \amp, 1 / repeats]);

 });

 };

 func.value;

)

Let's hear what happens when we play this. All the sounds play at once. This is

because the loop goes through as fast as it can. Next time, we'll learn how to

pause a loop and write a SynthDef that stops playing by itself.

Problems

1. Translate the following algebraic expressions into proper supercollider

syntax, using parenthesis where needed. You answers should be easily

understandable, even to people who don’t know SC’s order of

operations.

1.1. 3 + 5 * 4

1.2. 3 * 2 + 1

1.3. 3 * (4 + 2)

1.4. 2 * 3 + 4 * 5 + 7 / 2 + 1

2. Get yourself familiar with modulus by working out these problems by

hand:

2.1. 5 % 4

2.2. 163 % 9

2.3. 20 % 5

2.4. 17 % 6,

2.5. 23 % 2

2.6. 3 % 5

3. Write a function to print out the first n multiples of 10, starting from 0.

Pass the number of multiples into the function as an argument. Set the

default number to 7.

4. rand is a message that you can send to numbers. y.rand returns a

number between 0 and y. Humans are generally able to hear frequencies

between 20Hz and 20000Hz (the freq argument is Hz). Write a function to

play n random pitches and the first m overtones of those pitches. Make

sure that the random pitches are all in the audible range. Set the

amplitude of the overtones to one half of the amplitude of the

fundamentals. Pass the number of random pitches and the number of

overtones into the function as arguments. Set the default number of

random pitches to 2 and the default number of overtones to 3. Make

certain that your total amplitude will not peak.

4.1. Can you figure out a way to make sure that all your pitches,

including overtones, are in the audible range?

